解线性方程组的矩阵消元法

$$ x_1 + 3x_2 + x_3 = 2 \\ 3x_1 + 4x_2 + 2x_3 = 9 \\ -x_1 - 5x_2 + 4x_3 = 10 \\ 2 x_1 + 7x_2 + x_3 = 1 $$

写出上面线性方程组地增广矩阵,并进行矩阵消元:

$$ \left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 3 & 4 & 2 & 9 \\ -1 & -5 & 4 & 10 \\ 2 & 7 & 1 & 1 \\ \end{array} \right) \xrightarrow[\text{}]{②+①\times(-3), \ ③+①, \ ④+①\times(-2)}

\left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 0 & -5 & -1 & 3 \\ 0 & -2 & 5 & 12 \\ 0 & 1 & -1 & -3 \\ \end{array} \right)

\xrightarrow[\text{}]{(②,④)}

\left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 0 & 1 & -1 & -3 \\ 0 & -2 & 5 & 12 \\ 0 & -5 & -1 & 3 \\ \end{array} \right)

\xrightarrow[\text{}]{③+②\times2, \ ④+②\times 5}

\left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & -6 & 12 \\ \end{array} \right)

\xrightarrow[\text{}]{④ + ③\times2}

\left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 \\ \end{array} \right)

$$

最终得到上面的阶梯形矩阵以及下面的阶梯形方程组:

$$ \left\{ \begin{aligned} x_1 + 3x_2 + x_3 &= 2 \\ x_2 - x_3 &= -3 \\ 3x_3 &= 6 \end{aligned} \right. $$

阶梯型矩阵:

进一步化简,将主元全部变为1,且主元所在列的其余元素都是0,得到简化行阶梯形矩阵

$$ \left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 \\ \end{array} \right)

\xrightarrow[\text{}]{ ③\times \frac 1 3}

\left( \begin{array}{cccc} 1 & 3 & 1 & 2 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \end{array} \right)

\xrightarrow[\text{}]{ ②+③\times 1 , \ ① + ③\times(-1)}

\left( \begin{array}{cccc} 1 & 3 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \end{array} \right)

\xrightarrow[\text{}]{①+ ②\times (-3)}

\left( \begin{array}{cccc} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ \end{array} \right) $$

可以直接得到解:

$$ \left\{ \begin{aligned} x_1 &= 3 \\ x_2 &= -1 \\ x_3 &= 2 \end{aligned} \right. $$

三种初等行变换:

  1. 把一行的倍数加到另一行
  2. 两行互换
  3. 一行乘以一个非零常数

<aside> 💡 矩阵的初等行变换得到的方程组与原来的方程组是同解的。

</aside>

例1

例2